ケイ化マグネシウム熱電変換素子作製のための

簡易な反応焼結手法の開発

山本佳嗣*

Development of a Simple Reaction Sintering Method for Fabrication of Magnesium Silicide Thermoelectric Device

Yoshitsugu YAMAMOTO

To synthesize an Mg₂Si ceramics, Mg and Si powder mixed with the mole ratio of 2:1 was heat-treated in alumina crucible sealed in an inert atmosphere. The dense sintered body was obtained, and it was crushed and powdered for XRD. From the XRD pattern, it was found that unreacted Si phase was included in the body, and this suggests the evaporation of Mg caused by incompletely sealing of crucibles during heat-treatment. The obtained body showed the thermoelectric properties of n-type. The unreacted Si was considered to degrade the thermoelectric performance of this material.

Key words: Magnesium Silicide, Thermoelectric Material, Reaction Sintering Method, Seebeck Effect, Use of Energy

1. はじめに

ケイ化マグネシウム (Mg2Si) 熱電変換素子は, 200~600 °C 程度の中温領域において性能を発揮 する代表的な熱電変換材料であり,軽量である等 の特長から,自動車等の移動体の排熱を有効に活 用できる材料として期待されている^{1,2)}.

一方,シリコン(Si)とマグネシウム(Mg)を 熱処理して Mg2Siを合成しようとすると,Mgが 合成温度付近で酸化及び蒸発してしまい,合成が 不可能となる.これを避けるため,高真空状態を 保ちながら,不活性ガス(アルゴン(Ar))とと もにガラス管に封入したうえで熱処理を行う等と いった工夫が必要となる^{3・7)}が,この合成の困難さ が,Mg2Siの価格を引き上げる一因ともなってい る.

また、このようにして得られる Mg2Si は非常に 脆い粗粒体であるが、熱電特性を引き出し、素子

* プロジェクト研究課

として用いるためには、焼結して緻密化する必要 がある.この際も同様に、材料の酸化分解等を抑 える必要があり、放電プラズマ焼結装置等といっ た特殊な装置を用いて作製を行うことが必要とな る^{1,6)}.これもまた、Mg₂Si素子の利用が進みにく い理由の一つとなっている.

当所ではこれまで,量産に向く Mg2Si の簡易製 造法の開発を目指し,研究を行ってきた.その結 果,窯業用坩堝に MgとSiを入れて蓋を封止し, 熱処理することで,特殊な装置を用いることなく, Mg2Siを合成することに成功している.またその 際,熱処理条件(主に冷却時の条件)を制御する ことで,合成反応と同時に焼結反応を進め,緻密 な塊状体を得られる可能性を見出してきた.

そこで本研究では、市場化に向けたスケールア ップを見越し、従来の窯業用設備を転用した簡易 な合成手法を用いて、熱電特性を有する緻密な Mg2Si 焼結体を作製することを試みた.

2. 実験方法

2.1 試料合成

市販の Mg 粉末と Si 粉末をモル比 2:1 となる よう秤量してアルミナ製 B1 坩堝(内径 46 mm× 高さ 36 mm,容量 30 mL)に所定量(5 g 程度) 投入し, Ar ガスで満たしたグローブボックス中に 入れて坩堝内を Ar ガスで置換した.ボックス中 でアルミナ製の蓋を被せ,PVP 糊で封止したうえ でボックスから取り出し,さらに耐熱ボンドで封 止して空気中で一昼夜,ボンドを固化させた.図 1に Ar 封入坩堝の概略図を示す.

坩堝を雰囲気制御可能な電気炉に入れ,空気雰 囲気またはAr雰囲気下で,900~1,100°Cの温度 で数時間,熱処理を行った.これにより,Mgが 坩堝内で融解し,Mg浴中にSiが溶解することで 液相反応が進み,Mg2Siの合成が可能となる^{2,6)}.

2.2 試料の物性評価(結晶相同定, 密度測定,熱電能測定)

冷却後,得られた塊状試料をメノウ乳鉢で粉砕

し,粉末X線回折測定により結晶相の同定を行った.

また,塊状試料を所定の形状,サイズに切削・ 研磨した後,既定の測定方法(JIS R 1634:「フ ァインセラミックスの焼結体密度・開気孔率の測 定方法」)に基づき密度測定を行った.浸漬媒に はアセトンを用いた.

熱電特性の評価には ULVAC 理工製の熱電特性 評価装置 ZEM-3 を用い,試料の Seebeck 係数を 測定することで行った. Seebeck 係数 S [V/K]は 試料内の高温部と低温部との温度差 ΔT [K]と,そ の温度差により高温部と低温部間に発生する電位 差 E[V]を用いて $S = E / \Delta T$ で表され,材料の熱 電変換能を示すパラメータの一つである⁸⁾.

3. 結果・考察

3.1 試料外観

炉内をAr雰囲気とし、1,000°Cでそれぞれ2,4, 8 時間熱処理した後,放冷した試料の外観を図 2 に示す.いずれの場合も,青黒色の粗粒体が得ら れた.熱処理温度を1,100°Cに上げ,4時間処理 後,放冷した試料の外観を図3に示す.粗粒感は 減少したものの,空孔が多く,緻密体とはならな かった.そこで,冷却時間を制御し,1,100°Cで 4時間熱処理後,20°C/時の速度でゆっくり冷却 を行った.得られた試料の外観を図4に示す.放 冷した試料とは異なり,金属光沢を持つ青黒色の 塊状試料が得られた.1,050°Cで4時間熱処理後, 5°C/時の速度で非常にゆっくり冷却した試料の 外観を図5に示す.冷却速度を遅くすることで, 粗粒感がほぼ見られない,緻密で一様な塊状体を 得ることができた.

一方,炉内を空気雰囲気とした場合は,いずれ も塊状の試料は得られず,黒灰色の粉体となった.

図 2 Ar 雰囲気中 1,000 °C で所定の時間,熱処理した試料の外観図

図 3 Ar 雰囲気中 1,100 °C で 4 時間 熱処理後, 放冷して得られた試 料の外観

図 4 Ar 雰囲気中 1,100 °C で 4 時間 熱処理後, 20 °C /時で冷却して 得られた試料の外観

図 5 Ar 雰囲気中 1,050 °C で 4 時間 熱処理後, 5 °C/時で冷却して得 られた試料の外観

3.2 試料物性

炉内をAr雰囲気とし,1,000 °Cまたは1,100 °C で熱処理後, 放冷した試料の X 線回折パターンを 図 6 に示す.1,000 °C で熱処理した試料は, ほぼ 単相の Mg₂Si となっていることが確認された.

一方,熱処理温度を1,100°Cに上昇させた試料

図 6 Ar 雰囲気中で熱処理し, 放冷した 試料の XRD パターン

を制御した試料の XRD パターン

では、Siのピークが大きくなっていることが確認 された. 1,050 °C または 1,100 °C で熱処理後, 冷却速度を制御し、5~20 °C/時でゆっくり冷却し た試料の X 線回折パターンを図 7 に示す. 1,100 °C で熱処理した試料では、冷却速度を遅く するほど Si のピークが大きくなっていた. また, 1,050 °C で熱処理後、5 °C/時の速度で非常にゆっ くり冷却した試料でも、同様に、Si のピーク強度 が大きくなっていた. これらのことから、高温時, 耐熱ボンドによる封止強度が十分でなく、Mg が 坩堝外に蒸散してしまい、出発原料と生成物との 組成比にズレが生じ、未反応の Si が残留している と考えられる.

炉内を空気雰囲気とし、1,100°Cで4時間,熱処理を行った後、5°C/時の速度でゆっくり冷却した試料のX線回折パターンを図8に示す.MgOに帰属される非常に強いピークが観察され、Mgがほとんど酸化されていることが確認された.これは、上記同様、耐熱ボンドによる封止が十分にできておらず、炉内の酸素が坩堝中に入り込んでしまったことによると思われ、今後、坩堝の封止方法に改善を施す必要があると考えられる.

Ar 雰囲気下, 1,050 °C で 4 時間熱処理後, 5 °C/ 時の速度で冷却して得られた緻密塊状体につい て,密度測定を行ったところ, 2.05 g/cm³の値を 得た.純粋な Mg₂Si の密度は 1.99 g/cm³であり ⁹⁾,今回得られた試料は純粋な Mg₂Si よりも高い 密度を有しているといえる.X線回折測定の結果 から,塊状体内には未反応の Si が残留しているこ とが示唆されており,Si の密度は 2.33 g/cm³ と Mg₂Si よりも高い値であることから,密度測定の 結果は,残留 Si の存在と整合するものである.

緻密塊状体の表面を研磨することで、約 $3.4 \times$ $3.8 \times 7.0 \text{ mm}^3$ の角柱状試料を削り出し、熱電能測 定を行った.研磨した試料の外観を図 9 に、熱電 特性評価の結果(Seebeck 係数, power factor) を図 10 に示す.Seebeck 係数が負の値を示して いることから、導電キャリアとして電子が寄与す る n 型の熱電変換能を有することが確認された. また、温度が上がるにつれて係数の絶対値が上昇 することが確認されたが、各温度領域において、

図 9 Ar 雰囲気中 1,050 °C で 4 時間 熱処理後, 5 °C/時で冷却し, 研磨した試料の外観

および power factor)

純粋な Mg_2Si における係数と比べ 1/5 程度と低い 値であった $^{10\cdot12)}$. また, power factor についても 同様に,文献値 $^{10)}$ よりも低い値となった.最も高 い power factor が得られた 600 °C において, Mg_2Si に対する熱伝導率の文献値 3.27 W/mK¹⁾ を用いて無次元性能指数 ZT を試算したところ, ZT = 0.011 と見積もられた. Mg_2Si 中の過剰な Si は,特定の濃度範囲において導電率や熱起電力 の低下を引き起こすと言われており¹³⁾,今回の結 果についても塊状体中の残留 Si が強く影響して いると考えられる. Si の残留は,高温時の坩堝外 への Mg 蒸散の結果であることが示唆されたこと から,熱電特性向上の点からも,坩堝の封止方法 に改善を加える必要があると言える.

4. まとめ

排熱を有効活用するための熱電変換材料とし て期待される Mg2Si について,特殊な装置を用 いることなく,従来の窯業用設備を転用した簡易 な合成手法により緻密な Mg2Si 焼結体を作製す ることを試み,以下の結果を得た.

・Ar 雰囲気下で坩堝を封止することにより,坩 堝内を不活性状態として Mg₂Si の合成,焼結を 行うことを試みたが,封止強度が十分でなく,炉 内を空気雰囲気とした場合では原料の酸化を抑 えることはできなかった.

 ・炉内を Ar 雰囲気とすることにより、Mg2Siの 合成、焼結を行うことに成功し、特に 1,050 °C で4時間熱処理後、冷却を5°C/時と非常にゆっ くり行うことで、緻密な焼結体が得られた。

・坩堝の封止強度が十分でないことから,原料の Mgが坩堝外に一部蒸散し,得られた焼結体には 未反応の Si が残留していた.これが材料の熱電 特性を低下させていることが示唆された.

今後,坩堝の封止方法に改善を施し,量産に向 けたスケールアップを見越した簡易な合成,焼結 手法の確立を目指したい.

謝辞

本研究は,国立研究開発法人科学技術振興機構 研究成果展開事業 A-STEP フィージビリティ スタディ 探索タイプの助成を受け実施しまし た.

参考文献

 T. Nemoto et al. : "Power Generation Characteristics of Mg₂Si Uni-Leg Thermoelectric Generator". J. Electron. Mater., 41(6), p1312-1316 (2012)

- 2) 丹羽陽亮ほか: "Na 添加 Mg₂Si の熱電特性". 日本金属学会誌, 72(9), p693-697 (2008)
- 杉山明ほか: "メカニカルアロイングを利用した Mg₂Si 基複合熱電材料の作製". 粉体および 粉末冶金, 45(10), p952-957 (1998)
- 4) 杉山明ほか: "メカニカルアロイングおよびパルス通電焼結を利用した Mg2Si-MnSi1.73 熱電材料の作製". 日本金属学会誌, 64(5), p355-358 (2000)
- Y. Niwa et al.: "Thermoelectric Properties of Ca-Mg-Si Alloys". Mater. Trans., 50(7), p1725-1729 (2009)
- 6) K. Kim et al.: "Synthesis Characteristics and Thermoelectric Properties of the Rare-earth-doped Mg₂Si System". J. Korean Phys. Soc., 57(4), p1072-1076 (2010)
- (人に優しい環境に優しい次世代医療材料の開発(IV))".京都府中小企業技術センター 技報,37,p33-37 (2009)
- 5) 坂之上悦典ほか: "環境対応型熱電変換素子材料の廃熱利用可能性について". 京都府中小企業技術センター技報, 38, p37-41 (2010)
- 9) 孫斌ほか: "粉末冶金法による Mg2Si の固相 合成機構の解明". 高温学会誌, 37(6), p321-325 (2011)
- 10)J. Tani et al.: "Thermoelectric Properties of Sb-doped Mg₂Si Semiconductors ". Intermetallics, 15, p1202-1207 (2007)
- 11)松野光晴ほか: "液相-固相反応法によるマグネシウムシリサイド化合物の合成とその熱電特性". J. Jpn. Soc. Powder Powder Metallurgy, 56(1), p26-29 (2009)
- 12)D. Cederkrantz et al. : "Enhanced Thermoelectric Properties of Mg₂Si by Addition of TiO₂ Nanoparticles". J. Appl. Phys., 111(2), p023701-1-7 (2012)
- 13)T. Yi et al.: "Synthesis and Characterization of Mg₂Si/Si Nanocomposites Prepared from MgH₂ and Silicon, and their Thermoelectric Properties". J. Mater. Chem., 22, p24805-24813 (2012)