砂型三次元積層造型技術の評価

近藤義大*,服部 俊*,中村創一**

Evaluation of Three-Dimensional Molding Technology

Yoshihiro KONDO, Suguru HATTORI and Soichi NAKAMURA

Key words: Additive Manufacturing, Mold Sand, Casting Plan, X-ray CT, Three-Dimensional Technology

1. はじめに

近年, 銑鉄鋳物業界では, 木型や金型を必要と しない鋳型の造型方法が着目されている¹⁾. この 背景には, 試作時の方案変更が容易になるだけで なく,鋳型形状の自由度が増すなどの利点がある. たとえば, 従来の木型を用いる造型の場合には必 要であった抜け勾配が不要となり, 主型と中子を 一体として造型することも可能である.

そこで本研究では、木型、金型レス造型方法の 一種である、砂型積層造型技術に注目した.これ は、鋳物砂にバインダーを吐出し硬化させるイン クジェット方式と、鋳物砂を焼結させるレーザー 方式とに分類される三次元技術である²⁰.本研究 では、フラン自硬性鋳型のインクジェット方式積 層造型技術に着目し、従来手法では造型不可能で あった下型・中子一体鋳型(以下、中子一体型と 呼ぶ)および上型・下型・中子一体鋳型(以下、 上下一体型と呼ぶ)を積層造型した.

本報告では,砂型積層造型技術の評価を目的に, 造型した鋳型の外観評価やX線CTによる内部評 価,鋳造した鋳物について外観評価を実施したの で,結果を報告する.

2. インクジェット方式による砂型積層 造型機による鋳型の造型方法

本研究では, ExOne 社のインクジェット方式砂 型積層造型機 S·Max(以下,積層造型機とする)

* 金属研究室

** ものづくり研究課

を用いて、フラン自硬性鋳型を造型した.

インクジェット方式の砂型積層造型のメカニズ ムはつぎのとおりである.

まず,粒径 0.14 mm (カタログ値)程度に調整 された積層造型機専用の天然砂(以下,積層造型 砂とする)に,有機スルホン酸系の硬化触媒を添 加,撹拌したものを造型面に一層分敷き詰める. この層厚は 0.28 mm(同)程度である.

つぎに,鋳型部分のみ,フラン樹脂を約4 mass%吐出し,縮合反応により砂を硬化させる. この繰り返しにより,砂を積層し,鋳型を造型する.

ただし、この段階では、図 1a)に示すように、 鋳型以外の部分に未硬化砂が残る. そのため、図 1b)のとおり、未硬化砂をエアーブロー等で除去し て、鋳型が完成する.

従来の木型や金型を用いる手法では、中空部分 をもつ鋳物製品を鋳造する場合、上型、下型およ び中子をそれぞれ別に造型する必要があった.砂 型積層造型技術では、直接鋳型を造型することが 可能となるため、主型と中子を一体とした中子一 体型や、上型と下型と中子のすべてを一体とした 上下一体型の造型も可能である.

3. 実験方法

砂型積層造型技術において,積層造型砂,造型 された鋳型および鋳造した鋳物の評価を目的に実 験を行った.

3.1節では、積層造型砂の形状を測定した. 3.2

b) 砂除去後の積層造型鋳型

図1 未硬化砂の除去

節では,鋳型の強度および寸法精度を測定した. 3.3節では,2章で述べた利点に注目し,従来技術 では造型不可能だった中子レス,見切り面レス鋳 型を造型し,鋳造実験を行った.

3.1 積層造型砂の評価

3.1.1 積層造型砂の観察

積層造型砂は導電性がないため、金(Au)蒸着 で導電処理後、走査型電子顕微鏡で観察した.比 較のため、市販の輸入高純度けい砂でも同様の試 料を作製し、観察した.

3.1.2 積層造型砂の粒度分布の測定

試験方法は JIS Z 2601 に準拠した. 積層造型砂 を 50 g 採取し, ロータップ型ふるい機を用いて 15 分間ふるい分けを行い粒度分布を調べた. 比較 のため, 高純度けい砂 50 g に対しても同様に分布 を調べた.

3.2 積層造型鋳型の評価

3.2.1 鋳型強度の測定

試験方法は JIS Z 2601 に準拠した.積層造型機 を用いて φ 50×50 mm の円筒状の試料を作製し, 軸方向に対し圧縮力を負荷することで,鋳型の圧 縮強さを測定した.測定は 2 回実施した.

3.2.2 鋳型の寸法精度の評価

積層造型は,鋳型をz方向に積層するため,鋳 型表面で xy 平面に対して傾斜になる部分や曲面 などは,積層段差が発生する.このような段差は, 必然的に設計データと寸法差が発生する.このこ とを評価するため,図 2a)に示す鋳型の三次元設 計データをもとに,傾斜部分のある鋳型を積層造 型機で造型し評価に供した. 非接触三次元測定機で測定して得られた傾斜試料の形状測定データを図 2b)に示す.これと元の 三次元設計データを,比較用の検査ソフト(GOM Inspect Ver.7.5)の機能を用いて重ねあわせ,積 層段差および設計データとの寸法差を測定した. 測定箇所は,傾斜角の異なる傾斜部分2か所とした.

3.3 積層造型鋳型の試作評価および鋳 造実験

試作評価にはサイコロ形状のモデルを用い、中 子バリレス鋳物をターゲットとした中子一体型を 2種類、見切り面レス鋳物として上下一体型を 1 種類、計3種の鋳型を造型し、鋳造実験を行った。

3.3.1 鋳型の試作と評価

本項では,評価する3種の鋳型の詳細について 述べる.

図 3a)に、中子一体型の設計案を示す. なお, 造型した鋳型の写真は図 1a),図 1b)に示したもの である. これは,積層造型技術により可能となっ た主型と中子が一体の鋳型であり、必然的に鋳物 の中子バリが発生しない工法である.

積層造型鋳型では,2章で述べたように,未硬 化砂を除去する必要があるが,図 3a)の中子一体 型では,奥まった部分の未硬化砂の除去が物理的 に困難であるうえ,目視できないという課題が明 らかになった.そこで,砂除去具合を非破壊で確 認するため,X線CT(島津製作所SMX-225CT) で鋳型内部の観察を行った.

観察結果は,4.3.1 項で後述するが,この中子一体型では未硬化砂の除去効率に問題が残った.そ

こで、未硬化砂の除去効率の改善を目的に、新た に対策型中子一体型を造型した.これは、図 3b) のように、砂除去の困難な箇所、具体的には下型 の下面(6の面)および側面(4の面および5の 面)にエアーブローによる砂抜き用の穴を新たに 追加・設計し、ここからも砂を除去したのち、別 に穴の形に積層造型しておいた蓋を詰める、とい う鋳型方案である.

これらの中子一体型とは別のアイディアとして、図 4a),図 4b)に示す上下一体型も造型した. これも積層造型技術により可能となった鋳型であり、上型、下型および中子を一体としたことによ り見切り面が不要であり、バリの発生を防ぐこと ができる.未硬化砂の除去のため、サイコロ各面 の目の一部を砂抜き用の穴としておき、そこから 砂を除去したのち、あらかじめ穴の形状に積層造 型しておいたサイコロの目に相当する蓋を挿入 し、鋳型が完成する.

これについても,砂除去具合を X 線 CT で観察 した.

3.3.2 鋳造実験

前項で述べた2種類の中子一体型および1種類 の上下一体型を用い,鋳造性を比較評価するため 実験を行った.

溶湯は, 銑鉄, 鋼板を原料に用いて, 20 kg 高 周波誘導炉にて FC200 相当の溶湯成分で約 20 kg 溶製した. 溶湯は約 1500 °C まで昇温した後, Ca・Ba 系接種剤を溶湯重量比 0.5 %用い, 置き 注ぎ法にて接種処理した.

この溶湯を,AとBの2チャージ用意した.各々 溶湯AおよびBの引張 の化学成分を表1に示す.溶湯Aは処理後ただち も表1にあわせて示す.

に中子一体型(砂除去対策前)とJIS Z 2241 8C 号引張試験片用丸棒鋳型(シェルモールド鋳型) に鋳込み,溶湯 B も処理後ただちに対策型中子一 体型,上下一体型および丸棒鋳型に鋳込んだ.そ れぞれ約 60 分後に型ばらしを行った.

溶湯AおよびBの引張試験および硬さ試験結果 も表1にあわせて示す.

表 1	鋳造実験試料の化学成分および引張試験片の機械的性質

波涅	化学成分[mass%]				引張強さ	硬さ	
浴汤	С	Si	Mn	Р	S	[MPa]	[HBW]
А	3.47	1.93	0.79	0.11	0.10	265	192
В	3.49	1.88	0.72	0.10	0.11	223	194

4. 実験結果と考察

4.1 積層造型砂の評価

4.1.1 積層造型砂の観察

図 5a),図 5b)に積層造型砂と高純度けい砂の電子顕微鏡写真を示す.観察の結果,通常の高純度けい砂は 400 µm を超える比較的大きな粒も確認 されるなど,粒度のばらつきが見られた.一方, 積層造型砂では,100~200 µm の大きさの砂粒が 大半であった.

a) 積層造型砂

b) 高純度けい砂 図 5 走査型電子顕微鏡による砂の観察 (観察倍率 50 倍)

4.1.2 積層造型砂の粒度分布の測 定

両者の粒度分布を調べた結果を図6に示す.高 純度けい砂はふるいの呼び寸法106~425 µm に 粒径のばらつきがあったのに対して,積層造型砂 はメイン・ピークである呼び寸法106 µm に全体 の約62 mass%の砂が集中していることがわかっ

図 6 粒度分布

た.積層造型砂の粒径のばらつきは、高純度けい 砂に比べ少ないことがわかった.

4.2 積層造型鋳型の評価

4.2.1 鋳型強度の測定

積層造型機で作製した円筒状試料の圧縮強さを 表 2 に示す.実験の結果,圧縮強さは約 820 N/cm² を示し,一般的なフラン自硬性鋳型³⁾が約 500 N/cm² であることから,これに比べ高いことがわ かった.

表2 圧縮強さ試験

試験回数	圧縮強さ [N/cm²]
1	860
2	820

一般的に,単一粒径にふるい分けた新砂の場合, 粒径が小さく比表面積が大きいほど鋳型の圧縮強 さは低下することが知られている⁴⁾.前節で確認 したように積層造型砂のほうが粒径は小さいにも 関わらず,高い鋳型強度を示した.その要因とし て,積層造型砂はバインダー添加量が多いことが 考えられる.一般的に,フラン樹脂を用いた有機 自硬性鋳型は,バインダー添加量が多いほど,高 い圧縮強さを示すことが知られている⁵⁾.2章で 述べたように,積層造型鋳型はインクジェット方 式で約4mass%と,通常のフラン鋳型⁶⁾の2倍以 上のバインダーを添加しており,そのため粒径が 小さいにもかかわらず高い圧縮強さを示したもの と考えられる.

4.2.2 鋳型の寸法精度の評価

鋳型の寸法測定の結果を図 2b)に付記した.この結果をもとに鋳型表面についた積層段差について評価した.傾斜角の小さい造型箇所(約1°)は,実測値約7.69 - 5.11 = 2.58 mmに対して9個の

段差が確認された.また,傾斜角の大きい造型箇 所(約4°)は同約15.08-5.05=10.03 mm に対 して35個の段差が確認された.これらから,傾 斜角によらず段の高さが一層あたり約0.29 mm となると見積もられる.最終的に,この鋳型に鋳 造し,できた鋳物の外観を観察したところ,図2d) のように,この段差が鋳肌に転写されていること を視認した.

つぎに,鋳型の三次元設計データと形状測定デ ータを比較したところ,積層段差がある箇所では, 設計図面に対し,最大で0.27 mm 鋳型が小さく造 型されていた.反対に,設計図面に対し鋳型が大 きく造型されていた箇所はほとんど見られなかっ た.今回評価した2箇所のうちの傾斜角の大きい 箇所における結果を図2c)~図2f)に示す.

2章で述べたように,積層造型機の層厚は0.28 mmであることから,鋳型についた積層段差や, 鋳型と設計データの寸法差はこの層厚に相当し, 鋳型の寸法精度は層厚程度に収まることを確認した.

積層ピッチ 0.28 mm に対して,前節で確認した ように,積層造型砂の粒径はおおよそ 0.10~0.15 mm と,積層ピッチの半分程度である.積層造型 機は,鋳型を積層造型する際に,通常の鋳型造型 法と異なり砂を押し固めることができない.この ため,積層ピッチの半分程度の粒径の砂を用いる ことで砂詰まりを良くし,寸法精度を確保する必 要があると考えられる.

4.3 積層造型技術を活用した鋳型の 試作評価および溶解実験

4.3.1 鋳型の試作と評価

本研究で試作した3種類のサイコロ鋳型のX線 CTによる断面画像を図7a),図7b)および図8に 示す.ここで示すサイコロ6の面は中子の下面で あり,砂除去が困難だった面である.

図 7a)は最初に造型した中子一体型の CT 画像 である.サイコロの目と目の間に白い砂の影が確 認され,未硬化砂が固着してしまいうまく除去で きていないことが確認できた.未硬化砂の除去に は,エアーブローなどを当てる必要があるため, このまま鋳型に鋳造すると,製品に身食いが発生 すると考えられる.

図 7b)は砂除去穴によりエアーブローの改善を 試みた中子一体型の CT 画像である. 図 7a)と図

a) 砂除去対策前

b) 砂除去対策後
 図 7 中子一体型 X 線 CT 画像
 (出力 200 kV, 80 μA)

図 8 上下一体型 X 線 CT 画像 (出力 200 kV, 80 µA)

7b)を比較すると、対策後の図 7b)のほうが、砂が 比較的よく除去されており、エアーブローの効果 があったと考えられる.

図8は上下一体型のCT画像である.本方案で は見切り面がないことの反動としてエアーブロー による砂除去の効率が悪くなり,目の中子の周り に砂がやや残っており,さらなる砂除去の対策が 必要であることがわかった.

4.3.2 鋳造実験

3 個のサイコロ鋳物の外観評価を目視で行っ た.砂除去対策前の中子一体型は,前項での考察, また,図9左のように,未硬化砂の固着により, サイコロの目の部分にわずかな身食いが観察され た.一方で,対策後の中子一体型は,図9右に示 すように,身食いは観察されなかった.しかし, 砂除去用の穴を詰めた部分にはバリが発生した.

図 9 中子一体型鋳物の身食い (左が砂除去対策前,右が対策型)

上下一体型は、図 10a)のように、中子下面にあ たるサイコロ6の面の目の中子周りにわずかな身 食いが、6の面の淵に比較的広い範囲にわたる身 食いが観察された.中子周りの身食いは、未硬化 砂の固着によるもの、また、淵の身食いは、各面 の除去しきれなかった砂が溶湯に流されて下面に 集中したことによると考えられる.その一方、6 の面以外の各面には身食いは観察されなかった.

上下一体型は,図 10b)のように見切り面はない が,中子一体型と同様に砂除去後にサイコロの目 の中子を挿入した部分の多くにバリが発生してお り,やはり新たなバリ対策が求められる.

5. まとめ

砂型積層造型技術の評価のため,従来工法では 造型が不可能であった中子一体型や上下一体型を

a) 6 の面

b) 全景図 10 上下一体型鋳物

造型し,鋳型や鋳物を評価した.一連の実験をと おして以下の知見を得た.

・積層造型砂の大半の粒径は 106~150 µm と一般的な高純度けい砂よりも小さいが,積層造型した試料による鋳型強度は約820 N/cm²と一般的なフラン自硬性鋳型よりも大きいことがわかった. 一般的に,フラン鋳型は崩壊性が良いことが知られており[¬],積層造型鋳型においても同等の崩壊性を有するかは,今後定量的に検討する必要がある.

・積層造型鋳型の傾斜部分には積層段差が確認された.また,鋳型は設計値より最大で0.27 mm 程度小さくなるように造型されていた.このため積層造型鋳型を設計する際は,鋳物の縮み代に加え,積層ピッチ分程度鋳型が小さくなる点を考慮すること,造型面に対して傾斜となる部分を減らす向

きに造型することが必要である.

・積層造型技術を活用するためには,製品の身食 いを防ぐため,未硬化砂除去の対策を立てる必要 がある.本研究では,鋳型に砂除去用の穴を設け たが,穴を詰めた跡にバリが差した.このバリの 発生を抑制することは困難であるため,バリを除 去する必要がない箇所や,バリの除去が容易な箇 所に砂除去用の穴を設計するなどの工夫が必要で ある.

・上下一体型は見切り面がないため,固着してい ない砂であっても完全な除去は困難であった.こ の砂による身食いを防ぐためには,溶湯に流され る砂を集めるための溜まりを設計しておき,後加 工により溜まりを除去するなど,鋳型設計上の工 夫が必要である.

- 1) 萩原恒夫: "材料から見た 3D プリンターの現 状と将来".素形材,54(9),p37-44 (2013)
- 2) 岡根利光: "鋳造技術における 3D プリンターの活用". 滋賀県東北部工業技術センター「研究発表会&特別講演」別冊配布資料, p1-10 (2014)
- 3) 大橋明ほか: "球状低膨張鋳物砂の開発". 鋳 造工学, 75, p362-367 (2003)
- 4) 山本治ほか: "フラン鋳型の強度に及ぼす砂粒 の影響". 鋳物, 50, p480-484 (1978)
- 5) 山本治ほか: "フラン及びオイル・ウレタン鋳 型の常温並びに高温性質". 鋳物, 50, p14-19 (1978)
- 6) (社)日本鋳造技術協会:"第4版 鋳型造型法".
 (社)日本鋳造技術協会, p131 (1996)
- 7) (財)素形材センター: "第2版 鋳型の生産技術". (財)素形材センター, p286-294 (2002)

参考文献