シンクロトロン光による亜鉛めっき層の解析(Ⅱ)

――溶融亜鉛めっきの"やけ"の解析――

庄山昌志*,村上和美**

Fine Structure Analysis of Zn Plating Phase by Synchrotron Radiation (II) - Burnt deposit on galvanized steel -

Masashi SHOYAMA and Kazumi MURAKAMI

Fine structures for burnt deposit on Zn galvanized steels were analyzed by synchrotron radiation (XAFS and XRD). As a result, Zn-Fe chemical bonding and Zn/Fe compounds were not identified on the surface of Zn-galvanized steels by using XAFS and XRD measurement, respectively.

Key words: Zn Galvanizing, Burnt Deposit, Synchrotron Radiation, XAFS, XRD

1. はじめに

溶融亜鉛めっきは高温で溶かした亜鉛に鋼材を 浸し,表面に亜鉛皮膜を形成する技術であり,保護 皮膜として亜鉛めっき表面に空気や水を通しにく くさせる酸化皮膜が形成される.この酸化被膜は, 錆の発生を抑制することに加えて,犠牲防食作用と して亜鉛めっきに欠損が発生し素地が露出しても, 電気化学的に周囲の亜鉛が溶出し素地を保護する ことが報告されている^{1,2)}.

鋼材の表面に亜鉛めっきを施したものを亜鉛め っき鋼材と呼ぶが、この鋼材は単なる被覆効果のみ ならず、上記のような犠牲防食作用も期待できる.

このような亜鉛めっき鋼材の中でも,溶融亜鉛め っき鋼材は耐候性材料として多くの分野で使用さ れてきた.この溶融亜鉛めっき鋼材は,鋼材を酸 洗・フラックス処理をした後に 450 ℃程度で溶融 させた亜鉛に浸漬させたものであり,鉄素地と亜鉛 皮膜は,その中間層としての鉄-亜鉛の合金層によ り強固に付着している.

* 窯業研究室

** エネルギー技術研究課

我々は、昨年度の報告において、溶融亜鉛めっき の合金層について、シンクロトロン光を用いた X 線吸収微細構造解析 (X-ray absorption fine structure, XAFS) および X 線回折 (X-ray diffraction, XRD)による構造解析を報告してきた ³⁾. その結果、溶融亜鉛めっき表面から 10 µm 深さ 程度までは、Zn 相が主相であり、Zn-Fe から構成 される合金層は存在していないことが明らかとな った. その一方、めっき表面から 60 µm 程度まで 掘り進むと、Zn 相ではなく合金層としての FeZn₁₃ 相が主相として形成されていることが明らかとな った.

これらの合金層は溶融亜鉛めっき皮膜の膜厚を 大きくして耐食性を向上させることに役立ってい るものの,通常以上に成長することがあり,鋼材と の密着が悪くなり剥離が発生する場合や,めっき皮 膜表面の光沢がなくなる,いわゆる"やけ"の現象 を引き起こすことがある.

しかしながら,これら合金層の形成は鋼材の化学 組成やめっき作業条件によって左右されるため,合 金層の形成を抑制する有効な手法が見いだせてい ないのが現状である⁴⁻⁷. そこで,本研究では,溶融亜鉛めっきにおける"や け"現象について,シンクロトロン光を用いた XAFS および XRD による微細構造解析を行ったの で報告する.

2. 実験方法

2.1 試料作製

溶融亜鉛めっき用のベース鋼材として,自動車構 造用熱間圧延鋼板(JIS G3113)を用い,試料サイズ は 10.0 mm×10.0 mm×1.6 mm(t)とした. また, 溶融亜鉛めっきの条件としては,めっき浴温度 478℃,浸漬時間は 180sec とした.

得られた溶融亜鉛めっき試料に対し, 0.1 M 塩酸 により, 段階的にエッチング処理を行い, 亜鉛めっ き表面(エッチングなし), 20 µm エッチング, 90 µm エッチングの3段階でめっき層を析出させ ることで評価用試料とした.

2. 2 SEM/EDX 解析

上記により得られた亜鉛めっき試料について, SEM/EDX (日立ハイテクノロジーズ社製 Miniscope-TM3000)によりその断面像観察及び組 成分析を行った.組成分析は FP(Fundamental Parameter)法とし,分析元素は Zn および Fe を対 象とした.

また,分析は鉄素地から亜鉛めっき方向へ約 10 µm ごとに解析し,断面の組成プロファイルを取得した.

2.3 シンクロトロン光解析

(公財)科学技術交流財団あいちシンクロトロン 光センターのシンクロトロン光施設において,上記 亜鉛めっき試料について XAFS および XRD 解析を 行った.

XAFS 測定には BL5S1, XRD 測定には BL8S1(X 線エネルギー: 9.16 keV)のそれぞれのビームライ ンを用いた. XAFS の解析によって特定原子の電子 状態やその周辺構造(隣接原子までの距離等)など の情報を得ることが可能となる.

また、シンクロトロン光を用いた XRD 解析においては、通常の XRD 装置と同様の結晶構造解析が可能であるが、X 線の入射角を低角に固定することができるため、試料表面からの X 線侵入深さを制御できることが特徴となる. 今回の XRD 測定では入射角を 5.0°とし、侵入深さを約 3.0 µm と設定した.

3. 結果と考察

図1に(a)通常の溶融亜鉛めっき及び(b) "やけ" がある溶融亜鉛めっきの断面イメージ及びZnおよ びFeの断面方向の組成プロファイルを示す.図中, 左側が鉄素地であり右側が亜鉛めっき表面となる. 図1(a)においては、鉄素地から、約50 µm までは Zn および Fe が混合しており(組成はおよそ Zn80%, Fe20%),それ以降めっき表面までは、ほ ぼZn 成分のみが観察された.このことから、"や け"なし試料においては表面から40 µmの間は純 Zn めっき層が形成されており、その下部から鉄素 地の間でZn/Fe 合金層が形成されていることが示 唆される結果となった.

一方,図1(b)においては,鉄素地からめっき表面 までZnおよびFeが混合しており,その組成はお よそZn80%,Fe20%でほぼ一定になっていること が確認された.この結果より,"やけ"状態の表面 には,Znの他にFe成分が析出していることが明 らかとなった.

(a)やけなし (b)やけあり 図 1 Zn めっきの断面イメージ及び断面の組成 プロファイル

図 2 に亜鉛めっきの表面および各エッチング面 の XRD 測定結果を示す.前述のとおり,今回の XRD 測定では入射角を 5.0°と浅く設定している ため,試料への侵入深さは約 3.0 µm 程度であり, エッチング幅を超えた層の回折情報は得られてお らず,ほぼ作製した試料表面に関する回折情報だけ が得られている.

亜鉛めっき表面においては, Zn 相に加えて FeZn₁₃相もしくはFeO相が析出していることが観 察されたが, どちらであるかは判別が困難であっ た.また, 20 µm エッチング表面および 90 µm エ ッチング表面でも, Zn めっきにおける合金層とし て知られるFeZn₁₃相もしくはFeO相と思われる結 晶相の析出が認められたが,明確な判別は困難であ った.

図 2 "やけ"Zn めっきの各エッチング面の XRD 測定結果

これらのことを明らかにするため、図 3 に溶融 亜鉛めっきにおける"やけ"の有無による Zn 原子 の動径分布関数の比較結果を示す.図 3 の横軸は Zn 元素に結合を有する元素の種類と距離を示して おり、Zn 元素に結合する元素のイオン半径により そのピーク位置がシフトする(イオン半径が大きい 元素は結合距離が遠くなる). "やけ"のない通常 の亜鉛めっき表面においては、Zn 原子から約 2.3 Åの位置に大きなピークが観察された.このピーク 位置は、Zn 標準物質である Zn ホイルによる Zn-Zn 結合の位置と一致しており、亜鉛めっき表面におい ても、Zn-Zn 結合が支配的であることを示された. 一方、"やけ"表面においてもこの傾向は同様であ り、そのピーク位置から、"やけ"なしめっき表面 同様、Zn-Zn 結合が支配的であるとともに、Zn-Fe 結合が観察されなかった. この結果より, 溶融亜鉛 めっきの"やけ"表面には Zn-Fe 結合を有する化 合物は析出していないということが想定される.

図 3 "やけ"の有無による動径分布関数の比較 (Zn 吸収端)

図 4 に溶融亜鉛めっきにおける "やけ"の有無 による XRD プロファイルの比較を示す. 図より, 通常の "やけ"のない亜鉛めっき表面においては, ほぼ Zn 相のみからなるのに対し, "やけ"のある めっき表面においては 37.5°に Zn 相以外のピー クが観察された. 図 2 より, このピークは, FeZn₁₃ 相もしくは FeO 相と思われるが, 図 3 の XAFS 結 果において "やけ"のあるめっき表面においては Zn-Fe 結合が存在していないことが示唆されてい る.

以上の結果より、"やけ"のある溶融亜鉛めっき 表面においては、合金層として $FeZn_{13}$ 相が存在す るのではなく、Zn と Fe (もしくは FeO) が個別 に存在していることが予想された.

図 4 "やけ"の有無の XRD プロファイル比較

4. まとめ

シンクロトロン光を用いて, "やけ"のある溶融 亜鉛めっきの表面構造の解析を, XAFS および XRD 測定により行った. その結果, "やけ"のあ る亜鉛めっき表面においては, Zn 相に加えて FeO 相が混在している状態であることが予想された.

これより, 亜鉛めっきの "やけ "現象のより詳細 な解析が可能となり, 亜鉛めっきの構造解析におい てもシンクロトロン光解析の有効性を示すことが できた.

謝辞

本研究の遂行に当たり,産業技術総合研究所の多井 豊様,あいち産業科学技術総合センターの皆様に大 変お世話になりました.ここに感謝の意を記しま す.

参考文献

1) 日本鉄鋼協会編,建築用溶融亜鉛めっき構造

物の手引き, p20-p25(1998)

- 2)一般社団法人 日本溶融亜鉛鍍金協会ホームページ http://www.aen-mekki.or.jp/faq/tabid/62/D efault.aspx
- 注山昌志ほか;"シンクロトロン光による亜 鉛めっき層の解析",平成27年度三重県工 業研究所研究報告, No.40, p.86-89(2016)
- 4) 橋本哲ほか:"溶融亜鉛めっき鋼板の合金化
 に及ぼす鋼中の P の影響"鉄と鋼,日本鉄鋼
 協会, Vol.84, No.10,727(1998)
- 5) 村上和美ほか: "カルシウム粉末を被覆した 溶融亜鉛めっきのコンクリート中における 腐食挙動". 鉛と亜鉛 No.228 p6-p11 (2002.10)
- 6) 三吉康彦: "亜鉛系めっき鋼板",実務表面技術, Vol.35,No.1p22(1988)
- 7) 小端高行:溶融亜鉛めっきの"やけ"について,安治川技報, Vol.8(2002)