ナトリウムイオン二次電池用セルロース炭化負極材料の特性

丸林良嗣*, 富村哲也**

The Properties of the Carbon Anode Material Carbonized from Cellulose for Sodium Ion Secondary Batteries

Ryoji MARUBAYASHI and Tetsuya TOMIMURA

Carbon materials carbonized from cellulose were investigated for the carbon anode of sodium ion battery. Carbonization temperature of cellulose was from 500 °C to 900 °C. As a result, the highest discharge capacity of 160 mAh/g was obtained when carbonization at 500 °C in nitrogen atmosphere. The capacity after 50 cycle discharge was 88 % for that of first discharge.

Key words: Sodium Ion Batteries, Anode Material, Cellulose, Carbonization, Charge-Discharge Test

1. はじめに

リチウムイオン二次電池(以下,LIBという.) は、1991年に市場に投入されて以来,携帯電話, ノートパソコンなどの小型機器に主に使用されて きたが,ここ数年では自動車等の移動体や,家庭 や工場での電力貯蔵用など,比較的大容量を要す る機器に用途が拡がりつつある.このような状況 を受け近年リチウム化合物の生産量は右肩上がり に増加しており,その生産量は1990-2010年の 20年間で約5倍に増加している¹⁾.また,今後電 気自動車が普及していくことが見込まれるが,例 えば容量25kWhの電気自動車に現状のLIBを適 用し,リチウムやコバルトの化合物を消費すると, 世界の自動車の年産量に対し,約2%しか電気自 動車を生産できないことになり,資源の枯渇や価 格の高騰も起こることが予測される^{2,3)}.

こういった今後の課題すなわち大容量電池への 需要に応えるためには、レアメタルを使わない豊 富な資源量を有する材料を用い、かつ低コストで 高いエネルギー密度を有する電池の開発が必須で あり、その候補の一つとしてナトリウムイオン電 池(以下、SIBという.)が挙げられる^{2,4-7)}.ナト

** エネルギー技術研究課

リウムはリチウムに比べてクラーク数が約500倍 と存在量が多く、かつ価格は炭酸塩ベースで約33 分の1と安価である¹¹ことから、これを用いるSIB は次世代電池として有望である.

一方で,LIBの負極材料として主に用いられて いる黒鉛系材料はSIBの負極材料として使用でき ないことが報告されており^{1,8)},その他の負極材料 として黒鉛を除く炭素系材料やスズ系材料などが 注目されている^{1,9-14)}.炭素系材料では,山本らは アルゴン雰囲気でセルロースを1300°Cで焼成し て得られた炭化物を用い,300mAh/gに近い容量 を得ている¹³⁾.また,Chungらはマングローブを 1000°C真空中で焼成し得られた炭化物を用い, 283mAh/gの容量を得ている¹⁴⁾.

本報では、炭素系材料として原料にセルロース を用い、より低い温度域である 900 °C 以下で炭 化を試みるとともに、得られた炭化物を用いて SIB を作製し、その電池特性の評価を行ったので、 その結果を報告する.

2. 実験方法

2.1 原料

負極材料の原料には, α - セルロース(ナカラ イテスク)の繊維状粉末を使用した.

^{*} 窯業研究室伊賀分室

2.2 炭化処理

セルロースは、加熱に伴い 220 °C 付近にて水 の生成、揮発が起こると考えられていることから ¹⁵⁾、前処理として空気中 225 °C にて水分の除去を 行ったうえで、図 1 に示す石英製管状炉を用い、 200 mL/min の窒素気流中で昇温し、500 °C、 600 °C、700 °C、800 °C、900 °C の各温度にて1時 間保持し炭化焼成を行った.

図1 炭化焼成に用いた管状炉

2.3 炭化物の特性評価

焼成温度を様々に変えて得られた炭化物に対し, FE型走査電子顕微鏡(FE-SEM, JSM-7001F,日 本電子(株))による観察と,X線回折装置(XRD, Ultima IV,(株)リガク)による測定を行った.

2. 4 電池の作製及び評価

2.4.1 電極の作製方法

容積 10 mL のポリプロピレン(以下, PP という.)製容器中にバインダーであるポリフッ化ビニ リデン(PVDF)が 12 wt%添加された n・メチル・2・ ピロリドン(NMP)溶液を所定量計りとり,溶媒と して NMP を数滴添加し脱泡混練機(AR-100,(株) シンキー)にて混練した.次に,2.2 節で得られ た電池の活物質である炭化物を乳鉢で粉砕後,一 定量を計りとり,導電剤であるアセチレンブラッ ク(AB)とともに乳鉢で再度混合し,上述の PP 製 容器に移し入れた.その後,撹拌,脱泡,撹拌を 繰り返しスラリー状の電極材料を得た.なお,炭 化物と PVDF と AB の重量比はすべて 80:10:10 とした.

得られたスラリーを直径 $12 \text{ mm }\phi$,厚さ $50 \mu m$ のアルミ箔上に塗布し、120 °Cで 5 hr以上、真空乾燥を行った.その後、20 kNにて一軸プレスを行い電極とした.

2. 4. 2 コインセルの組立

図2に示すような構成でCR2032型コインセル を作製した.

図2 作製したコインセル(ハーフセル)の構成

コインセルの作用極には 2.4.1 節で得られた 電極を用い,対極には金属ナトリウムを用いた. セパレーターは, PP 製セルガード#2400 を 2 枚用い,その間にはガラス繊維フィルターを挟 んだ.また,スペーサー,スプリング,正負極 缶は SUS316 製のものを使用した.電解液には 1.0 M NaPF6の電解質を含むエチレンカーボネ ート(EC):ジェチレンカーボネート(DEC) (1:1 vol%)を使用した.なお,コインセルの組立は, 露点を-70 °C 以下に保ったグローブボックス 中で行った.

2. 5 充放電試験

充放電試験は 0°C, 25°C または 45°C に保っ た各恒温槽内で行い,充放電レートを 1/10C,カ ットオフ電圧を 0.02-2.0 V として定電流 (CC) 条件により充放電を行った.またレート特性の評 価として,レートを 5 サイクルごとに 1/10C, 1/5C, 1/10C, 1/2C, 1/10C, 1C, 1/10C, 2C, 1/10C, 3C と変化させて充放電を行った.その際,充電と 放電の間にはそれぞれ 30 分の休止時間を設けた.

3. 結果と考察

3.1 炭化物の物性

図 3 に 500 °C 焼成にて得られた炭化物の SEM 写真を示す. 一つの粒子は帯状であり長さは概ね 100 µm,幅は 10 µm 程度であった. なお,焼成 温度を変えても粒子の形状や大きさに変化は見ら れなかった.

図 3 500 °C 炭化物の SEM 写真

図4に各温度で焼成した炭化物のXRDパター ンを示す.回折ピークは,全体的にブロードにな っており黒鉛化していないことがわかる.焼成温 度が900 °Cになると26 °付近にショルダーピー クが現れることが確認できる.これは黒鉛の(002) 面に帰属されるピークであり,900 °C付近で黒鉛 化が始まることを示している.

- 3.2 充放電試験結果
- 3.2.1 焼成温度の影響

図 5 に 500 °C から 900 °C 焼成にて得られた炭 化物の 25 °C での 1, 3, 5 サイクル目の充放電曲線 を示す. なお, 充放電曲線において, 作用極(炭 化物)にナトリウムが挿入されて, 電圧が下がる 方向を放電と定義した.

3 サイクル目の放電容量を比較すると、それぞ れ 160 mAh/g (500 °C), 130 mAh/g (600 °C), 79 mAh/g (700 °C), 71 mAh/g (800 °C), 65 mAh/g (900 °C)となっており、焼成温度が高くなるにつ れて容量が小さくなることが確認された.

図 6 にこれら試料のサイクル特性を示す. 500 °C 焼成品では,2サイクル目が161 mAh/g, 39 サイクル目が141 mAh/g とその間の容量維持 率は88%であった.また,より高温で得られた炭 化物においても,大きな劣化が観察されるものは なかった.

図 5 各温度で焼成し得られた炭化物の充放電曲 線

図 6 各温度で焼成し得られた炭化物のサイクル特性

3.2.2 充放電時の温度の影響

3.2.1 節にて高い放電容量を示した 500 °C 焼成

品を用い,試験環境温度を変化させて充放電を行った際のサイクル特性を図7に示す.

25 °C と 45 °C で充放電を行った電池の性能は, 放電容量もサイクル特性もほぼ同程度であったが, 0 °C で充放電を行った際は,サイクル特性は良好 なものの放電容量は 30 %程度低いものであった. これは,使用した電解液の溶媒に比較的融点の高 い EC を用いていることが一因であると考えられ る.

図 7 試験環境温度の違いによるサイクル特性の変化

3.2.3 レート特性

500 °C 焼成品を用い,充放電レートを5サイク ルごとに変化させながら充放電した時のサイクル 特性の変化を図8に示す.

充放電レートを 1/10Cより高くすると放電容量 は低下するが,再度 1/10Cに戻すと容量の回復が 見られた.しかし,レートが 2Cになると放電容 量はほぼ 0に近づき,3Cになると放電容量は 0 となり,電池として機能しなかった.

図 8 レート特性(充放電レートを変化させなが ら充放電した際のサイクル特性)

4. まとめ

ナトリウムイオン電池の負極材料として,セル ロースを原料とした炭化物を用いてコインセルを 作製したところ,以下のことが判明した.

- セルロースを窒素気流中で 500 °C から 900 °C にて焼成し炭化したところ, 500 °C で 炭化したものが最も高い放電容量 160 mAh/g を示し,それ以上焼成温度が高くなるに従い 容量が低下した.
- 500 °C 焼成品の放電容量維持率は 2 から 50 サイクル間で 88 %と高い値となった.
- 500 °C 焼成品にて試験環境温度を0 °C, 25 °C, 45 °C と変化させて充放電を行ったところ, 0 °C では他の温度に比べ 30 %程度容量が低 下した.
- 既存の報告では 1000 °C 以上の炭化温度で約 300 mAh/g の容量を示すものがあるが、本研 究では、 500 °C という比較的低温域でナト リウムイオン電池の負極活物質となりうる炭 素材料が合成でき、容量は 160 mAh/g と低い ものの充放電が可能であることが確認できた。

参考文献

- M.D. Slater et al. : "Sodium-Ion Batteries" Adv. Funct. Mater., 23, p947-958(2013)
- 岡田重人ほか: "ナトリウムイオン二次電池 への期待と展望". Electrochemistry, 79, p470-476(2011)
- 3) 駒場慎一ほか: "ナトリウムイオン電池負極 と表面科学".表面科学, 34, p303-308(2013)
- K. Kubota et al. : "Review-Practical Issues and Future Perspective for Na-Ion Batteries". J. Electrochem. Soc., 162, pA2538-A2550(2015)
- 5) 駒場慎一ほか: "ナトリウムイオン二次電池 - 新しい電池反応系への挑戦-".
 Electrochemistry, 80, p93-97(2012)

- 山田淳夫: "蓄電池の元素戦略".
 Electrochemistry, 82, p169-174(2014)
- 中西真二ほか: "新規ナトリウムイオン二次 電池のための正極及び負極材料の開発".
 Electrochemistry, 83, p182-187(2015)
- 8) 久世 智ほか: "ナトリウムイオン二次電池 の開発". 住友化学, p20-30(2013)
- 9) B. Zhang et al. : "Correlation Between Microstructure and Na Storage Behavior in Hard Carbon". Adv. Energy Mater., 6, 1501588(2016)
- 10) E. Irisarri et al. : "Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries". J. Electrochem. Soc., 162, pA2476-A2482(2015)
- 11) R. Alcantara et al. : "Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C". J. Electrochem. Soc., 149, pA201-A205 (2002)
- 12) V.L. Chevrier et al. : "Challenges for Na-ion Negative Electrodes". J. Electrochem. Soc., 158, pA1011-A1014(2011)
- 13) 山本 聖ほか: "セルロースを原料とした難黒
 鉛化性炭素の合成とナトリウムイオン電池負
 極特性".第42回炭素材料学会年会要旨集,
 1A12 (2015)
- 14) D. Chung et al.: "The effects of pre-heat treatment of biomass-derived hard carbon on the electrochemical properties in sodium-ion batteries". 第 57 回電池討論会, 3H27(2016)
- 15) 河本晴雄: "セルロースの熱分解反応と分子機構". 木材学会誌, 61, p1-24(2015)

(本研究は,法人県民税の超過課税を財源としています.)