

5年微の達成目縹 Veas

＜令和3年庋～令和7年度〉：

三重県 県土整调部

令和4年3月改定要令和5年3月改定令和6年3月改定

はじめに

災害に負けない強䩤な県土づくりを加速

目 次

1．はじめに	．
2．国土強靱化予算と達成目標	．．．．． 2
3． 5 年後の達成目標一覧	3
4．各対策メニューの概要と目標	5
5．その他の対策メニュー	．．．．． 23
6．対策の完了時期＜試算＞	．．．．． 24

国では，防災•減災，国土強靱化のための3か年緊急対策に続き，令和3年度より「5か年加速化対策」をスタートしています。その際，各種対策について，全国的な「5年後の達成目標」を定め，対策を計画的に進めることとしています。
三重県においても，紀伊半島大水害，東日本大震災から10年目 の節目の年となる令和3年度に，県管理施設への主な対策につい て「5年後の達成目標」を定め，計画的に対策を推進しています。
県民の皆様のご理解とご協力を得ながら，災害に負けない強勒な県土づくりを加速してまいります。

Ver．4は，国土強靭化の「5年後の達成目標」のフォロー アップとして，これまでの実績と令和5年度－6年度見込み等を取りまとめたものです。
＜目標設定・フォローアップ等＞
本目標は，令和3年度予算（14か月予算，県土整備部所管）における，国土強靱
化予算が，同水準で5年間継続することを前提に，マクロロで試算したものです。個別
の実施箇所は，各地域における状況を踏まえ，各年度当初に決定します。
本目標の達成状況は，毎年度フォローアップ・公表します。また，県民の皆様にわ
かりやすく伝わるよう，随時，本目標を含めた容の改善に努めてまいります。

国土強勒化予算と達成目標

国土強靱化等予算の推移（県土整㬐部所管）
達成目標（対策完了率）

5年後の達成目德一覧（1）

要対策数に対する対策完了率

5年後の達成目德一覧（2）

要対策数に対する対策完了率

主な対策メニュー				R7年度末（5年後） \square R7年度末目標	備考	頁
$\left\lvert\, \begin{aligned} & \text { 流 } \\ & \text { 域 } \end{aligned}\right.$	（12）	越水しても壊れにくい粘り強い堤防強化対策	58\％66\％ 約70\％			16
	（13）	ダム整備（鳥羽河内ダム）			事業進捗率 R10年度完成予定	17
	（14）	ゼロメートル地帯における 河川堤防の耐震対策 令和 6 年度 目標達成見込み	20\%23\% 約20\％		着手率	18
	（15）	ゼロメートル地帯における海岸堤防の耐震対策	48\%50\% 約	約50\％		19
	（16）	砂防ダム堆積土砂の撤去			県独自項目	20
都	（17）			82\％ 約80\％		21
市	（18）	下水道管路の地震対策	46%	73\%	着手率	22

（1）法面•盛土の土砂災害防止対策（緊急輪送道路）

災害リスク

対策例

道路の法面や盛土において，急な勾配，水を含むと強度が低下しやすい地質，表層で湧水の発生，小規模な亀裂が存在する など，豪雨時に崩壊するリスクが ある箇所が，緊急輸送道路で 149箇所確認されています。
＞法枠エ：斜面をコンクリート製 の枠で固定して崩落を防止
＞落石防護網エ：斜面をネット等で覆うことにより落石によ る被害を防止
＞落石防護柵工：道路際等に柵 を設置し，落下する石を受け止めることで被害を防止等

5年緂の達成目標

[^0]
（2）
 波河部橋梁の流失防止対策（緊急輸送道路）

災害リスク

令和2年7月豪雨（熊本県球磨川1）写真提供：国土交通省九洲地方整備局

対策例

渡河部の橋梁は，橋脚数が多 い構造の場合，水圧や流木の衝撃等で橋自体が流失するリスク，橋の基礎部分が激流で洗堀され るリスク等があります。
緊急輸送道路のうち，橋脚によ る河川の流れへの影響が大きく， かつ耐震基準を満たしていない橋梁が8橋確認されています。

橋脚数が多い橋梁について架け替えを行い，橋脚数の少な い構造形式に変更し，河積阻害率※を抑えることにより，豪雨時 の橋梁の流失を防止します。
※：河積阻害率とは，橋脚等，河川の中の水の流れを阻害する構造物の幅の合計 と川幅の比です。原則として5\％以内 に収める必要があります。

5年後の達成目標

現状：本対策は5か年加速化対策で新たに講じるものである
ため「ー」としている。
※：令和3年3月現在の流失するリスクがある渡河部橋梁数
＜主な実施箇所：令和6年度（令和5年度12月－2月補正）＞
○ 一般国道260号 東宮橋（南伊勢町）
○主要地方道浜島阿児線 桧山路大橋（志摩市）
○ 一般国道311号 古川橋（尾鷲市）
○一般国道311号 湊川橋（熊野市）
等

（3）
 舗装修繕（緊急輪送道路）

災害リスク

対策例

老朽化に伴う舗装のひび割れ が，アスファルト層を貫通すると，雨水が路盤まで浸透し，路盤の支持力が低下するなど，舗装の損傷が拡大し，自動車等の走行 に著しい支障が生じます。このよ うなリスクがある道路が，緊急輸送道路で約57km確認されてい ます。

路盤を含め損傷した舗装を取 り除き，計画交通量等に基づき決定した舗装構成で，舗装を打 ち換えます。

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）ほか＞
○主要地方道松阪一志線（松阪市）
○—般県道天花寺嬉野インタ一線（松阪市）
○主要地方道大台宮川線（大台町）
○主要地方道伊勢大宮線（度会町）

道路

（4）橋梁の耐震補強（緊急輪送道路）

災害リスク

阪神淡路大震災以前の基準で設計された橋梁は，関東大震災 クラスの地震をもとに設計されて おり，阪神淡路大震災クラス等 の大規模地震が発生した場合，橋脚等が損傷し，長期間通行が出来ないリスクがあります。この ような橋梁等が，緊急輸送道路で553橋確認されています。

阪神淡路大震災クラス等の大規模地震が発生した際にも損傷が限定的なものに留まり，速やかに機能回復が出来るように対策を講 じます。
＞橋脚の補強：橋脚を鉄筋と特殊なモルタル等で補強
＞落橋防止対策：橋桁と橋脚を連結すること等で橋桁の落下 を防止

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
○一般県道三行庄野線 汲川原橋（鈴鹿市）
○一般国道42号 夫婦橋（伊勢市）
○—般国道260号 豊漁橋（大紀町）
○一般国道167号 船津橋（鳥羽市）
等

道路

（5）未改良区間の整備（㸚急輪送道路）

災害リスク

現在の道路構造令は，車道の幅員を5．5m以上としていますが， これを満たさない未改良の道路 では，車両のすれ違いが困難で あるなど，災害時の緊急輸送を四滑に実施することが出来ない リスクがあります。このようなリス クがある道路が，第二次緊急輸送道路で約 19 km 確認されてい ます。

対策例

5年後の達成目標

令和 5 年度 目標達成	

O一般国道368号（奥立川）	（津市）
O 一般県道368号（下太郎生1工区）	（津市）
O一般県道蓮峡線（七日市）	（松阪市）
O 一般国道368号（上長瀬）	（名張市）

災害リスク

対策例

これまでの水門は，供用中に発生する確率の高い地震（L1地震動）をもとに設計されてお り，南海トラフ地震等の大規模地震が発生した場合，柱等が損傷し，ゲート開閉が出来ない等のリスクがあります。この様 な大型水門等が，20施設確認されています。

将来にわたつて考えられる最大級の強さを持つ地震（L2地震動）に耐えられるように対策を講じます。
$>$ 水門柱の補強：鉄筋と特殊 なモルタル等で補強
＞排水機場建屋の補強：柱や壁等を鉄筋とコンクリート等 で補強

等

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
○鍋田川下水門（木曽岬町）
○笹笛川防潮水門（明和町）
○ 大堀川水門（明和町）

（7）洪水浸水想定区域図の作成

災害リスク

対策例

水位周知河川以外の全ての県管理河川について，洪水浸水想定区域図※を作成•公表し ます。
※：洪水時の円滑かつ迅速な避蜼の碓保 を図るため，想定しうる最大梘模の降雨 により河川が汇濫した場合に浸水が洎定 される区域や，水深，浸水䋛続時間等 を記載。これに基づき，市町ではハザード マップを作成し，各世帯に提供。

5年後の達成目標


```
<主な実施箇所:令和5年度>
    令和4年度 完了
```


（8）砂防堰堤等による避難所•要配慮者利用施設の保全

災害リスク

対策例

豪雨時に土石流や地すべり， がけ崩れ等の土砂災害が発生 するリスクがある区域※に，避難所及び要配慮者利用施設 （社会福祉施設，学校，医療施設等）が，843施設確認されて います。
※：土砂垁害防止法に基づき指定された土砂害特別警戒区域（レッドゾーシ）及び警戒区域（イエローゾーン）
＞砂防堰堤工：土石流が発生し た時，大きな岩や流木などを含む土砂を貯め，下流への被害を防止
＞擁壁工：斜面の下に擁壁を作 り，がけ崩れを防止
＞法面エ：斜面をコンクリート製 の枠で固定したり植物で保護 することでがけ崩れを防止等

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
○ 八島 砂防堰堤工（鈴鹿市）
○ 大谷川砂防堰堤工（大紀町）
○ 山居3地区 擁壁工（紀北町）
○かぶち谷 砂防堰堤工（紀宝町）

災害リスク

対策例

高潮による浸水被害から防災拠点等が集積する地区や緊急輸送道路，鉄道等を守るため，伊勢湾台風が満潮時に到達し た際の影響を想定し，堤防の設置や高さを上げる等の対策 が必要な海岸が約131kmあ ります。
＞堤防エ：堤防の設置や高さを上げることで，高潮等による海水の侵入を防止
＞養浜エ：人工的に土砂を供給 し，減少した砂浜を回復させ，波の力を減衰
＞離岸堤エ：沖合いに海岸線と ほぼ平行に構造物を設け，波の力を減衰

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
○川越地区海岸 堤防工（川越町）
○ 上野•白塚地区海岸 堤防工（津市）
○的矢港海岸 護岸工（志摩市）
○井田地区海岸 人エリーフエ（紀宝町）

（11）河川堆積土砂の撤去

災害リスク

対策例

河川に土砂が堆積すると，水 がスムーズに流れず，豪雨時 に洪水のリスクが高まります。現在，河川には上流からの土砂流出により，毎年約20万m ${ }^{3}$ の土砂が堆積しており，また， これまでに撤去されず蓄積してき た土砂が，全体で約310万m ${ }^{3}$確認されています。

県の河川事業により，毎年の堆積量を上回る約 22 万 m^{3} を撤去し ます。加えて，民間の砂利採取に ついて，制度を拡充することによ り，毎年 15 万m ${ }^{3}$ 程度の撤去を目指します。これらにより，毎年合計約37万m³を撤去し，蓄積した土砂も含めて計画的な撤去を進 めます。

5年後の達成目標

都市

（11）都市公園の老朽化対策

災害リスク

対策例

公園施設の老朽化が進み，公園利用者の事故発生リスク や，南海トラフ地震等の大規模災害発生時に避難所や活動•物資搬送拠点等としての防災機能を十分に発揮出来ない リスクがある都市公園が，6公園確認されています。

予防保全型の管理に移行す るため，長寿命化計画に基づ き，緊急度の高い老朽化した公園施設の改修等の対策を講じます。
＞老朽化した休㕷施設の更新
＞耐用年数を超えた浄化槽 の更新

5年後の達成目標

＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
○北勢中央公園 テニスコート更新（四日市市）
○鈴鹿青少年の森 休憩施設（四阿）更新（鈴鹿市）

（12）越水しても壊れにくい粘り強い堤防強化対策

災害リスク

対策例

裏側の法面や天端等をコンク リートブロック等で覆い，越水し ても壊れにくい「粘り強い堤防」 に強化します。
堤防が壊れるまでの時間を少し でも引き延ばすことによって，住民 の方が避難する時間を確保するこ とができます。

5年後の達成目標

＜主な実施箇所：令和5年度＞
○員弁川（朝日町）
○柘植川（伊賀市）
○ 赤羽川（紀北町）
○北山川（熊野市）

災害リスク

昭和63年の集中豪雨（鳥羽市）

対策例

加茂川水系では昭和63年の集中豪雨（時間最大 53 mm ，総雨量 306 mm ）により甚大な被害（死者4名，浸水面積186ha，浸水戸数72戸）が発生しました。 こうした豪雨は，加茂川水系で 20年に1回の確率で発生する リスクがあります。

鳥羽河内ダムを整備することに より，河川のピーク時の流量を 1／5 に抑え，浸水被害を軽減し ます。
＜浸水被害低減効果＞
■ 浸水想定面積
整備前 62 ha \rightarrow 整備後 12 ha
■浸水想定戸数
整備前327戸 \rightarrow 整備後17戸

5年後の達成目標

[^1]
災害リスク

東日本大震災（宮城県阿武隈川）
写真提供：国土交通省東北地方整備局

対策例

河川堤防は日本海中部地震以前 は地震による外力を考慮しておらず，大規模地震が発生した場合，沈下 や損傷といった変形が生じ，土地の低いゼロメートル地帯では，河川の流水が越流した際に浸水被害が長期化するリスクがあります。このよう なリスクの可能性があるゼロメート ル地帯における河川堤防の区間が約6km確認されています。

上記区間のうち，地盤の状況等か ら地震時に変形の恐れがある箇所 については，将来にわたつて考えら れる最大級の強さを持つ地震（L2 地震動）発生後も，堤防高さが照査外水位 \times 以上の高さを確保できるよう，鋼矢板打設及び堤防を嵩上げする等の耐震対策を講じます。
※：喼查外水位とは，満潮時の水位や波浪高さ等を考慮した水位です。

5年後の達成目標

現状：令和3年3月現在の着手済み延長数（約0． 6 km ） 3か年緊急対策で約0． 6 km 着手（完成約 0.6 km ）
※：平成30年度に実施した重要インフラの緊急点検結果 による河川堤防の要対策区間延長が約 51 km約51kmのうちゼロメートル地帯における河川堤防の区間延長が約6km

> <主な実施箇所:令和6年度 (令和5年度12月•2月補正) > ○鍋田川 堤防耐震（木曽岬町）

災害リスク

対策例

伊勢湾台風等を機に造られた海岸堤防は，大規模地震が発生した場合，沈下や損傷といった変形が生じ，土地の低いゼロメートル地帯 では高潮や津波による浸水被害 が長期化するリスクがあります。
ゼロメートル地帯で直接海に面し ている海岸堤防の区間が約6kmあ ります。

上記区間のうち，地盤の状況等 から地震時に変形の恐れがある箇所については，将来にわたつて考えられる最大級の強さを持つ地震（L2地震動）発生後も，5年に1回程度発生する規模の高潮によ る浸水被害が生じないよう，鋼矢板を打設する耐震対策を講じます。

5年後の達成目標

現状：令和3年3月現在の対策完了区間延長数（約2． 5 km ）
※1：本対策は，3か年緊急対策の対象ではなかったため，従前は通常事業で対応
※2 ：令和3年3月現在のゼロメートル地帯で直接海に面している海岸堤防の区間延長
＜主な実施箇所：令和6年度（令和5年度12月•2月補正）$>$ ○城南第一地区海岸 堤防工（桑名市）
○ 川越地区海岸 堤防工（川越町）

（118）砂防ダム堆積土砂の撤去

災害リスク

対策例

砂防ダムの堆積土砂が満杯に なると，さらに発生した土砂を貯めきれず，豪雨時に土石流 が発生するリスクがあります。砂防ダムには毎年約3万m ${ }^{3}$ の土砂が堆積しており，満杯 になったダムの蓄積量は全体で約180 万m³確認されています。

県の砂防事業により，毎年の堆積量を上回る約15 万m³を撤去します。リスクの高い，土砂 で満杯になった箇所から計画的 な撤去を進めます。

5年後の達成目標

＜主な実施箇所：令和5年度＞
○小滝川砂防ダム（いなべ市）
○奥の小谷川砂防ダム（津市）
○木梶川砂防ダム（松阪市）
○銚子川砂防ダム（紀北町）

（11）下水道マンホールの耐震補弾

災害リスク

対策例

阪神淡路大震災以前の基準で設計された下水道マンホールは，供用中に発生する確率の高い地震（L1地震動）をもとに設計されており，南海 トラフ地震等の大規模地震が発生し た場合損傷し，下水が流下出来ない事態や道路陥没等が生じるリスクが あります。このようなりスクがあるマン ホールが，11基確認されています。

将来にわたつて考えられる最大級の強さを持つ地震（L2地震動）発生後も下水を上流から下流へ流せる状態や道路の交通機能を確保出来るようにマンホールの内側を鉄筋とコンクリート等で補強 する対策を講じます。

5年後の達成目標

現状：令和3年3月現在の対策完了箇所数（1基）
※ 1 ：本対策は， 3 か年緊急対策の対象ではなかったため，従前は通常事業で対応
※2：1997年指針（下水道施設の耐震対策指針と解説 （1997年版））以前の基準で設計された下水道マンホール が419基
419基のうち平成16～17年度に実施した耐震診断で詳細な検討が必要と判断された下水道マンホールが40基 40基のうち詳細設計の結果，耐震補強が必要となった下水道マンホールが 11 基
＜主な実施箇所：令和5年度＞
○ 松阪処理区白山幹線（松阪市）

（18）下水道管路の地震対策

災害リスク

対策例

阪神淡路大震災以前の基準で設計 された下水道管路は，供用中に発生 する確率の高い地震（L1地震動）をも とに設計されており，南海トラフ地震等の大規模地震が発生した場合損傷し，下水が流下出来ない事態や道路陥没等が生じるリスクがあります。 この様なリスクの可能性がある開削 あるいは推進工事で施工された管路 の区間が，約2kmあります。

上記区間のうち，地盤の状況等か ら地震時に損傷の恐れがある箇所 については，将来にわたつて考えら れる最大級の強さを持つ地震（L2震動）発生後も，下水を上流から下流へ流せる状態や道路の交通機能 を確保できるよう対策を講じます。
＞耐震性を有する管路に敷設替え
＞既設管の内部に新たな管を挿入し モルタル等を充填して管路を補強

5年後の達成目標

現状：本対策は5か年加速化対策で新たに講じるものである ため「一」としている。
※：1997年指針（下水道施設の耐震対策指針と解説（1997年版））以前の基準で設計された下水道管路の区間延長が約 162 km －約162kmのうち平成30年度に実施した重要インフラの緊急点検による下水道管路の要対策区間延長が約 18 km
－約18kmのうち過去の震災において大きな被害が発生していないシールド工事で施工された約16kmを除く，開削あるいは推進工事で施工された下水道管路 の区間延長が約 2 km
＜主な実施箇所：令和6年度（令和5年度12月補正）＞
○雲出川左岸処理区香良洲幹線（津市）

その他の対策メニュー

＜道路分野＞

－高規格道路のミッシングリンク解消及び4車線化，高規格道路と直轄国道 とのダブルネットワーク化等による道路ネットワークの機能強化対策
－老朽化対策（橋梁，トンネル，道路附属物等）

＜流域分野＞

- 流域治水対策（河川における河道掘削，堤防整備等）
- 老朽化対策（河川管理施設，ダム管理施設，砂防関係施設，海岸保全施設，港湾施設）
＜都市分野＞
- 市街地等の緊急輸送道路における無電柱化対策
- 下水道施設の老朽化対策

対策の完了時期〈試算〉（1）

主な対策メニュー			令和 2年度末	令和 7年度末		対策の完了時期			
			ケース 1 令和8年度以降 「5か年加速化対策」と同水準 の国土強靭化予算が継続		ケース② 令和8年度以降 「3か年緊急対策」と同水準 の国土強靭化予算が継続	ケース(3) 令和8年度以降通常予算のみで対応	備考		
	（1）	法面•盛土の土砂災害防止対策（緊急輸送道路）		13\％	約40\％	約20年後	約30年後	約60年後	
	（2）	渡河部橋梁の流失防止対策 （緊急輸送道路）	－	約50\％	約10年後	約10年後	約15年後	仮橋•旧橋撤去を含む	
	（3）	舗装修繕 （緊急輸送道路）	－	約70\％	約10年後	約10年後	約20年後	第1次緊急輸送道路につ いては，令和7年度までに概ね完了予定	
	（4）	橋梁の耐震補強 （緊急輸送道路）	88\％	100\％				令和8年度完了	
	（5）	未改良区間の整備 （緊急輸送道路）	47\％	約60\％	約20年後	約20年後	約30年後		
流域	（6）	河口部の大型水門•樋門等 の耐震化	20\％	約50\％	約15年後	約20年後	約30年後		
	（7）	洪水浸水想定区域図の作成	20\％	100\％					
	(8)	砂防堰堤等による避難所•要配慮者利用施設の保全	36\％	約40\％	約80年後 （約20年後）	約110年後 （約25年後）	約170年後 （約30年後）	（ ）内は24時間滞在型の要配慮者利用施設の保全完了目標	
	（9）	海岸堤防等による高潮対策	73\％	約80\％	約40年後 （約20年後）	約45年後 （約20年後）	約60年後 （約30年後）	）内は背後に指定避難所が位置する海岸におけ る対策完了目標	
	（10）	河川堆積土砂の撤去	8\％	約40\％	約15年後 ${ }^{*}$	約25年後 ${ }^{*} 1$			
$\begin{aligned} & \hline \text { 都 } \\ & \text { 市 } \end{aligned}$	（11）	都市公園の老朽化対策	33\％	100\％					

※ 対策の完了時期は，目標設定時点の要対策箇所において対策が完了するまでに要する期間であり，対策完了後も老朽化の進行などに伴い，さらなる対策が必要。
※1 河川堆積土砂の撤去について，ケース（1）は，令和7年度以降も緊急浚渫推進事業債が継続した場合，ケース②は，令和6年度で緊急浚渫推進事業債が終了した場合

対策の完了時期＜試算＞（ 2 ）

主な対策メニュー			令和 2年度末	令和 7年度末	対策の完了時期			備考	
			ケース（1） 令和8年度以降 「5か年加速化対策」と同水準 の国土強靭化予算が継続		ケース(2) 令和8年度以降「3か年緊急対策」と同水準 の国土強靭化予算が継続	ケース(3) 令和8年度以降通常予算のみで対応			
流	（12）	越水しても壊れにくい粘り強い堤防強化対策		22\％	約70\％	約10年後	約15年後	約30年後	
	（13）	ダム整備 （鳥羽河内ダム）	37\％	約80\％				令和10年度完成予定	
	（14）	ゼロメートル地帯における河川堤防の耐震対策	10\％	約20\％	約45年後	約80年後	約130年後	鍋田川については，令和 7年度完了予定	
	（15）	ゼロメートル地帯における海岸堤防の耐震対策	40\％	約50\％	約20年後	約20年後	約30年後		
	（16）	砂防ダム堆積土砂の撤去	3\％	約30\％	約15年後 ${ }^{\text {＊}}$	完了の見込み無し※1			
$\left\lvert\, \begin{aligned} & \text { 都 } \\ & \text { 市 } \end{aligned}\right.$	（17）	下水道マンホールの耐震補強	9\％	約80\％	約10年後	約10年後	約10年後		
	（18）	下水道管路の地震対策	－	100\％					

※ 対策の完了時期は，目標設定時点の要対策箇所において対策が完了するまでに要する期間であり，対策完了後も老朽化の進行などに伴い，さらなる対策が必要。
※1 砂防ダム堆積土砂の撤去について，ケース（1）は，令和7年度以降も緊急浚渫推進事業債が継続した場合，ケ一ス②1は，令和6年度で緊急浚渫推進事業債が終了した場合

[^0]: ＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞ ○一般国道163号 補強土壁工（津市）
 ○一般国道422号 落石防護柵工（大台町）
 ○一般国道260号 吹付工（南伊勢町）
 ○ 主要地方道賀田港中山線 落石防護柵工（尾驚市）等

[^1]: ＜主な実施箇所：令和6年度（令和5年度12月•2月補正）＞
 ○ダム本体エ（鳥羽市）
 O 付替道路工（鳥羽市）

